Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits
نویسندگان
چکیده
Chip-based photonic quantum computing is an emerging technology that promises much speedup over conventional computers at small integration volumes. Particular interest is thereby given to polarisation-encoded photonic qubits, and many protocols have been developed for this encoding. However, arbitrary wave plate operation on chip are not available so far, preventing from the implementation of integrated universal quantum computing algorithms. In our work we close this gap and present Hadamard, Pauli-X, and rotation gates of high fidelity for photonic polarisation qubits on chip by employing a reorientation of the optical axis of birefringent waveguides. The optical axis of the birefringent waveguide is rotated due to the impact of an artificial stress field created by an additional modification close to the waveguide. By adjusting this length of the defect along the waveguide, the retardation between ordinary and extraordinary field components is precisely tunable including half-wave plate and quarter-wave plate operations. Our approach demonstrates the full range control of orientation and strength of the induced birefringence and thus allows arbitrary wave plate operations without affecting the degree of polarisation or introducing additional losses to the waveguides. The implemented gates are tested with classical and quantum light.
منابع مشابه
Quantum Inspired Differential Evolution Algorithm
To enhance the optimization performance of differential evolution algorithm, by studying the implementation mechanism of differential evolution algorithm, a new idea of incorporating differential strategy and rotation of qubits in the Bloch sphere is proposed in this paper. In the proposed approach, the individuals are encoded by qubits described on Bloch sphere, and the rotation angles of qubi...
متن کاملModal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate.
Lithium niobate photonic circuits have the salutary property of permitting the generation, transmission, and processing of photons to be accommodated on a single chip. Compact photonic circuits such as these, with multiple components integrated on a single chip, are crucial for efficiently implementing quantum information processing schemes.We present a set of basic transformations that are use...
متن کاملQuantum Network Protocol for Qudits with Use of Quantum Repeaters and Pauli Z-Type Operational Errors
In this chapter a quantum communication protocol with use of repeaters is presented. The protocol is constructed for qudits i.e. the generalized quantum information units. One-dit teleportation is based on the generalized Pauli-Z (phase-flip) gate’s correction. This approach avoids using Pauli-X and Hadamard gates unlike in other known protocols based on quantum repeaters which were constructed...
متن کاملQuantum ant colony optimization algorithm based onBloch spherical search
-In the existing quantum-behaved optimization algorithms, almost all of the individuals are encoded by qubits described on plane unit circle. As qubits contain only a variable parameter, quantum properties have not been fully embodied, which limits the optimization ability rise further. In order to solve this problem, this paper proposes a quantum ant colony optimization algorithm based on Bloc...
متن کاملAdding control to arbitrary unknown quantum operations
Although quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations-a requirement in many quantum algorithms, simulations and metrology. The technique, which is independent of how the op...
متن کامل